Arabic Dialect Identification in Speech Transcripts
نویسندگان
چکیده
In this paper we describe a system developed to identify a set of four regional Arabic dialects (Egyptian, Gulf, Levantine, North African) and Modern Standard Arabic (MSA) in a transcribed speech corpus. We competed under the team name MAZA in the Arabic Dialect Identification sub-task of the 2016 Discriminating between Similar Languages (DSL) shared task. Our system achieved an F1-score of 0.51 in the closed training track, ranking first among the 18 teams that participated in the sub-task. Our system utilizes a classifier ensemble with a set of linear models as base classifiers. We experimented with three different ensemble fusion strategies, with the mean probability approach providing the best performance.
منابع مشابه
Arabic Dialect Identification Using iVectors and ASR Transcripts
This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egypti...
متن کاملArabic Language WEKA-Based Dialect Classifier for Arabic Automatic Speech Recognition Transcripts
This paper describes an Arabic dialect identification system which we developed for the Discriminating Similar Languages (DSL) 2016 shared task. We classified Arabic dialects by using Waikato Environment for Knowledge Analysis (WEKA) data analytic tool which contains many alternative filters and classifiers for machine learning. We experimented with several classifiers and the best accuracy was...
متن کاملUsing prosody and phonotactics in Arabic dialect identification
While Modern Standard Arabic is the formal spoken and written language of the Arab world, dialects are the major communication mode for everyday life; identifying a speaker’s dialect is thus critical to speech processing tasks such as automatic speech recognition, as well as speaker identification. We examine the role of prosodic features (intonation and rhythm) across four Arabic dialects: Gul...
متن کاملAutomatic Dialect Detection in Arabic Broadcast Speech
In this paper, we investigate different approaches for dialect identification in Arabic broadcast speech. These methods are based on phonetic and lexical features obtained from a speech recognition system, and bottleneck features using the i-vector framework. We studied both generative and discriminative classifiers, and we combined these features using a multi-class Support Vector Machine (SVM...
متن کاملGMM-Based Maghreb Dialect IdentificationSystem
While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker’s dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background...
متن کامل